Drive systems of machine tools

Technical principles
 Main drive system

Drive systems of machine tools

- Main drive system
- Provides main cutting movement
 - Rotational
 - Linear

- Secondary drive system
- Provides secondary cutting movement
 - Rotational
 - Linear

Drive system of machine

Rotational movement

Linear movement

ω, Μ

• overall transmission ratio

- overall efficiency
 - lifetime

Drive system of machine

The technical principle

- A. Drive member energy transformation
- B. Drive mechanism -
 - **B1. Gear mechanism -** changing range of output parameters
 - B2. A mechanism for changing the type of movement changes rotary movement into linear

A. Drive members

ELECTROMOTORS:

• They use the principle of the generation of mechanical forces in the wire, carrying a current is placed in an electromagnetic field.

HYDROMOTORS:

• They use the pressure energy (oil, air).

DC motor:

The excitation coil is powered from a DC source.

The rotor moves in the magnetic field. In its conductors induces a voltage and current is formed.Torque is proportional to the size of I.

DC motor:

AC induction motor:

Windings on the stator is supplied with three-phase current, and generates a rotating electromagnetic field with speed.

n = 60 f/ p

In the rotor a voltage is induced. Current flowing through the armature causes torque. (Rotating electromagnetic field tries to drift rotor with it.)

Slip of revolutions.

AC induction motor:

Synchronous AC motor:

The rotor has a permanent magnet having poles that are alternately north and south.

By varying the the direction of the magnetic flux in the stator to the rotor moves.

Synchronous AC motor: ROTOR STATOR

• Stepper motor:

Synchronous motor with permanent magnet with a considerable number of poles.

Control current pulses are fed successively to each phase, the rotor rotates intermittently as it is progressively drawn into individual poles.

Suitable for positioning.

14

Linear motor:

- It is many-pole electrical machine, which air gap is stretched flat.
- Can be synchronous and asynchronous.
- Direct drive of feedrates.

Linear motor:

17

A. Hydromotors

- Pump
- The flow distributor
- Hydromotor

A. Hydromotors

A. Selection of drive member

Required properties:

- functional
- operating
- Different required properties for:
 - Main DS
 - Secondary DS

Economic evaluation.

B1. Gear mechanisms for speed change

- gear mechanisms used to extend the range of the output speed and torque of the drive member
- 1. The stepped speed change
- **2.** Continuous revs regulation

Requirement for optimum cutting speed

B1. Gear mechanisms for speed change

Electric way

The stepped change

- Switching the number of pole brushless motor
- (Up to three output speed)

Fluent change

- Regulating motors:
- DC with thyristor converters
- AC with frequency converters

B1. Gear mechanisms for speed change

Mechanical method

The stepped change

- Gears
- Belts (changing diameter of pulleys)

Fluent change

- Variable transmissions
 - Belts
 - Chains
 - Harmonic gearbox

Gears

Basic terms: Simple drive:

 $i = n1/n2 = \omega 1/\omega 2$ = d2/d1 = M2/M1 = z2/z1

Step-down gear – reduction, i>1 Step-up gear – multiplier

Complex drive:

Gear ratio of individual gears:

$$i_{12} = n_1/n_2, \quad i_{34} = n_2/n_3, \dots$$

Gear ratio i $_{total} = i_{12} \cdot i_{34} \cdot \dots$

Replaceable wheels.

To change whole speed range.

Sliding cluster.

Sliding wheels into engagement with fixed counter gears.

Splined shafts.

- Wheels with couplings.
- Wheels on one shaft are fit with clearance.The wheels are connected with the shaft by coupling.

29

Step cone pulley drive

B1. Gear mechanisms for continuous revs regulation

Rotational

Requirements:

- ensure the possibility of setting the cutting speed to a sufficient extent and with the necessary accuracy
- secure for cutting motion power requirement
- enable a rapid reversal of the cutting motion
- for machines with high automation ensure accurate positioning of the output member (spindle)
- reliability, durability, dynamics, rigidity, thermal stability, noise ...

Parameters of main drive system

Power	Up to 100 kW
Revolutions	Up to 80 000 rpm
Torque	Up to 1000 Nm

• A significant development of motors with high control.

- ⇒ This leads to simplification or complete elimination of subsequent gear mechanisms:
- direct drives

- induction motor with a lot of speed gearbox
 older and inexpensive machines
- control motor (induction with frequency converter) with two or three speed gearbox
- direct drive (electrospindle)

Motor parameters:

- motor power P
- motor nominal speed n_e
- maximum motor speed n_M

other parameters are derived:

• control range r_p during a constant power

$$r_p = n_M / n_e$$

Power, torque – motor speed

Requirements for the output member:

- P on the spindle,
- n_{max} of spindle,
- n_{\min} of spindle,
- maximum permissible torque M_L limited,
- limited speed compute from P and M_L

$$\omega_L = \frac{P}{M_L}$$

$$n_L = \frac{30 * \omega_L}{\pi}$$

permissible drop in performance between grades or overlap

(
$$a = P/P_{min} = 1,26$$
 given by standard.)

life of the machine approx. 14 000 hours

The number of required steps of gear mechanism: given n_{max} , n_L , r_p

the number of necessary steps p

 $r_p^{p} = n_{max}/n_L \implies p$

- If it exact number does not overlap nor between-degree drop in performance.
- If not, rounded up to an integer.

Diagram the output member - speed, torque, power

Limited torque.

Permissible drop in performance between grades or degrees of overlap.

Input gear

Speed diagram

- Gear paths of the individual steps
- Final gear

39

Kinematic scheme:

2. Design of main drive system Construction design

Checking of motor

Check the total speed gear, achieving the limit torque, achieving the required speed range

Dimensioning:

- gearing (strength, surface speed, strength and dimensional calculation)
- shafts
- bearings
- backlash
- connecting elements,